Appendix E-3 SONIR Proposed Conditions

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

NAME OF PROJECT

DATA INPUT FIELD

A Site Recharge Parameters Value Units 1 Area of Site 30.43 acres 2 Precipitation Rate 42.82 inches 3 Acreage of Lawn 18.90 acres 4 Fraction of Land in Lawn 0.621 fraction 5 Evapotranspiration from Lawn 24.20 inches 6 Runoff from Lawn 0.90 inches 7 Acreage of Impervious 9.33 acres 8 Fraction of Land Impervious 0.307 fraction 9 Evaporation from Impervious 4.28 inches 10 Runoff from Impervious 0.00 inches 11 Acreage of Unvegetated 0.00 acres 12 Fraction of Land Unvegetated 0.000 fraction 13 Evapotrans. from Unvegetated 24.20 inches 14 Runoff from Unvegetated 2.1 inches 15 Acreage of Water 0.76 acres 16 Fraction of Site in Water 0.025 fraction 17 Evaporation from Water 30.00 inches 0.00 18 Makeup Water (if applicable) inches 19 Acreage of Natural Area 1.44 acres 20 Fraction of Land Natural 0.047 fraction 21 Evapotrans. from Natural Area 24.20 inches 22 Runoff from Natural Area 0.30 inches 23 Acreage of Other Area 0.00 acres 24 Fraction of Land Other Area 0.000 fraction 25 Evapotrans. from Other Area 0.00 inches 26 Runoff from Other Area 0.00 inches 18.90 27 Acreage of Land Irrigated acres 28 Fraction of Land Irrigated 0.621 fraction 29 Irrigation Rate 16.00 inches 30 Number of Dwellings 0 units 31 Water Use per Dwelling 0 gal/day 32 Wastewater Design Flow 0 gal/day 33 Commercial /STP Design Flow gal/day

251 Searingtown Road

Proposed Conditions

SHEET 1

В	Nitrogen Budget Parameters	Value	Units
1	Persons per Dwelling	4.23	persons
2	Nitrogen per Person per Year	10.0	lbs
3	a. Sanitary Nitrogen Leaching Rate	50%	percent
3	b. Sanitary Nitrogen Leaching Rate	0%	percent
4	Area of Land Fertilized 1	18.90	acres
5	Fertilizer Application Rate 1	2.30	lbs/1000 sq ft
6	Fertilizer Nitrogen Leaching Rate 1	14%	percent
7	Area of Land Fertilized 2	0.00	acres
8	Fertilizer Application Rate 2	0.00	lbs/1000 sq ft
9	Fertilizer Nitrogen Leaching Rate 2	0%	percent
10	Pet Waste Application Rate	3.19	lbs/pet
11	Pet Waste Nitrogen Leaching Rate	50%	percent
12	Area of Land Irrigated	18.90	acres
13	Irrigation Rate	16.00	inches
14	Irrigation Nitrogen Leaching Rate	15%	percent
15	Nitrogen in Precipitation	1.00	mg/l
16	Precipitation Nitrogen Leaching Rate	15%	percent
17	Nitrogen in Water Supply	2.00	mg/l
18	Nitrogen in Commercial/STP Flow	40.00	mg/l

C Comments

- Please refer to user manual for data input instructions.
- Sanitary Nitrogen Leaching Rate 3.a.) is for residential wastewater and 3.b.) is for commercial or STP which varies from 50 percent for conventional systems to 10 percent for STP effluent discharge.

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

SITE RECHARGE COMPUTATIONS

Proposed	Conditions
----------	------------

SHEET 2

A Lawn Area Recharge	Value	Units	ΠD	B Impervious Area Recharge	Value	Units
1 A = Fraction of Land in Lawn	0.621	fraction	٦f	1 A = Fraction of Land in Impervious	0.307	fraction
2 P = Precipitation Rate	42.82	inches	٦ſ	2 P = Precipitation Rate	42.82	inches
3 E = Evapotranspiration Rate	24.20	inches	$\prod \llbracket$	3 E = Evapotranspiration Rate	4.28	inches
4 Q = Runoff Rate	0.90	inches		4 Q = Runoff Rate	0.00	inches
S R(1) = P - (E + Q)	17.72	inches		5 R(i) = P - (E + Q)	38.54	inches
6 R(L) = R(1) x A	11.01	inches		$6 R(I) = R(i) \times A$	11.82	inches
C Unvegetated Area Recharge			_ 4	D Water Area Loss		
1 A = Fraction of Land Unveg.	0.000	fraction	ШL	1 A = Fraction of Site in Water	0.025	fraction
2 P = Precipitation Rate	42.82	inches	ШL	2 P = Precipitation Rate	42.82	inches
3 E = Evapotranspiration Rate	2.10	inches	ШL	3 E = Evaporation Rate	30.00	inches
4 Q = Runoff Rate	0.76	inches		4 Q = Runoff Rate	0.00	inches
5 R(u) = P - (E + Q)	39.96	inches	ШL	5 M = Makeup Water	0.00	inches
$6 R(U) = R(u) \times A$	0.00	inches	ШL	$6 R(w) = \{P - (E+Q)\} - M$	12.82	inches
				$7 R(W) = R(w) \times A$	0.32	inches
E Natural Area Recharge			_	F Other Area Recharge		
1 A = Fraction of Land in Natural	0.047	fraction	IJĹ	1 A = Fraction of Land in Other	0.000	fraction
2 P = Precipitation Rate	42.82	inches		2 P = Precipitation Rate	42.82	inches

Ŀ	Naturai Area Kecnarge		
1	A = Fraction of Land in Natural	0.047	fraction
2	P = Precipitation Rate	42.82	inches
3	E = Evapotranspiration Rate	24.20	inches
4	Q = Runoff Rate	0.30	inches
5	R(n) = P - (E + Q)	18.32	inches
6	$R(N) = R(n) \times A$	0.87	inches

F Other Area Recharge		
1 A = Fraction of Land in Other	0.000	fraction
2 P = Precipitation Rate	42.82	inches
3 E = Evapotranspiration Rate	0.00	inches
4 Q = Runoff Rate	0.00	inches
S = R(0) = P - (E + Q)	42.82	inches
$6 R(O) = R(o) \times A$	0.00	inches

\boldsymbol{G}	Irrigation Recharge		
1	A = Fraction of Land Irrigated	0.621	fraction
2	I = Irrigation Rate	16.00	inches
3	E = Evaptranspiration Rate	9.04	inches
4	Q = Runoff Rate	0.90	inches
5	R(irr) = I - (E + Q)	6.06	inches
6	$R(IRR) = R(irr) \times A$	3.76	inches

H Wastewater Recharge		
1 WDF = Wastewater Design Flow	0	gal/day
2 WDF = Wastewater Design Flow	0	cu ft/yr
3 A = Area of Site	1,325,531	sq ft
4 R(ww) = WDF/A	0.00	feet
5 R(WW) = Wastewater Recharge	0.00	inches

Total Site Recharge					
R(T) =	R(L) + R(I) +	R(U) + R(W) + R(N) + R(O) + R(IRR) + R(WW)			
R(T) =	27.77	inches			

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

SITE NITROGEN BUDGET

Proposed Conditions

SHEET 3

A Sanitary Nitrogen-Residential	Value	Units	I	Pet Waste Nitrogen	Value	Units
1 Number of Dwellings	0	units	floor	1 AR = Application Rate	3.19	lbs/pet
2 Persons per Dwelling	4.23	capita		Human Population	0	capita
3 P = Population	0.00	capita		Pets = 17 percent of capita	0	pets
4 N = Nitrogen per person	10	lbs	_	$N(p) = AR \times pets$	0.00	lbs
5 LR = Leaching Rate	50%	percent	<u> </u>	5 LR = Leaching Rate	50%	percent
$6 N(S) = P \times N \times LR$	0.00	lbs	<u> </u>	$N(P) = N(p) \times LR$	0.00	lbs
7 N(S) = Sanitary Nitrogen	0.00	lbs	JĿ	N(P) = Pet Waste Nitrogen	0.00	lbs
C Sanitary Nitrogen (Commercial/ST	P)	•	I	Water Supply Nitrogen (other than waste	ewater, if applicable)	
1 CF = Commercial/STP Flow	0	gal/day	<u> </u>	1 WDF = Wastewater Design Flow	0	gal/day
2 CF = Commercial/STP Flow	0	liters/yr	1 2	WDF = Wastewater Design Flow	0	liters/yr
3 N = Nitrogen in Commercial	40.00	mg/l] [3	N = Nitrogen in Water Supply	2.00	mg/l
4 LR = Leaching Rate	50%	percent		$4 N(WW) = WDF \times N$	0	milligrams
$5 N(S) = CF \times N \times LR$	0	milligrams		N(WW) = Wastewater Nitrogen	0.00	lbs
6 N(S) = Sanitary Nitrogen	0.00	lbs	<u> </u>			
			I	Fertilizer Nitrogen 2	•	
E Fertilizer Nitrogen 1		•	J Li	1 A = Area of Land Fertilized 2	0	sq ft
1 A = Area of Land Fertilized 1	823,284	sq ft	1 2	2 AR = Application Rate	0.00	lbs/1000 sf
2 AR = Application Rate	2.30	lbs/1000 sf] [3	3 LR = Leaching Rate	0%	percent
3 LR = Leaching Rate	14%	percent		$4 N(F2) = A \times AR \times LR$	0.00	lbs
$4 N(F1) = A \times AR \times LR$	265.10	lbs		N(F2) = Fertilizer Nitrogen	0.00	lbs
5 N(F1) = Fertilizer Nitrogen	265.10	lbs	<u> </u>			
,			I	I Irrigation Nitrogen		
G Precipitation Nitrogen				R = Irrigation Recharge (inches)	6.06	inches
1 R(n) = Natural Recharge (feet)	2.00	feet	4 4	R = Irrigation Rate (feet)	0.50	feet
2 A = Area of Site (sq ft)	1,325,531	sq ft] [3	A = Area of Land Irrigated	823,284	sq ft
$3 R(N) = R(n) \times A$	2,652,115	cu ft		$4 R(I) = R(irr) \times A$	415,587	cu ft
4 R(N) = Natural Recharge (liters)	75,107,898	liters	_	R(I) = Site Precipitation (liters)	11,769,414	liters
5 N = Nitrogen in Precipitation	1.00	mg/l		N = Nitrogen in Water Supply	2.00	mg/l
6 LR = Leaching Rate	15%	percent	JĽ	7 LR = Leaching Rate	15%	percent
$7 N(ppt) = R(N) \times N \times LR$	11,266,185	milligrams		$8 N(irr) = R(I) \times N \times LR$	3,530,824	milligrams
8 N(ppt) = Precipitation Nitrogen	24.84	lbs	ع ا	N(irr) = Irrigation Nitrogen	7.79	lbs

Total Site Nitrogen					
N=	N(S) + N(P) +	N(WW) + N(F1) + N(F2) + N(ppt) + N(irr)			
N=	297.72	lbs			

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

NAME OF PROJECT

251 Searingtown Road

Proposed Conditions

FINAL COMPUTATIONS

SHEET 4

\boldsymbol{A}	Nitrogen in Recharge	Value	Units
1	N = Total Nitrogen (lbs)	297.72	lbs
2	N = Total Nitrogen (milligrams)	135,167,083	milligrams
3	R(T) = Total Recharge (inches)	27.77	inches
4	R(T) = Total Recharge (feet)	2.31	feet
5	A = Area of Site	1,325,531	sq ft
6	$R = R(T) \times A$	3,067,702	cu ft
7	R = Site Recharge Volume	86,877,312	liters
9	NR = N/R	1.56	mg/l

FINAL CONCENTRATION OF NITROGEN IN RECHARGE

1.56

В	Site Recharge Summary	Value	Units
1	R(T) = Total Site Recharge	27.77	inches/yr
2	R = Site Recharge Volume	3,067,702	cu ft/yr
3	R = Site Recharge Volume	22,948,004	gal/yr
4	R = Site Recharge Volume	22.95	MG/yr

Conversions used in SONIR

Acres x 43,560 = Square Feet Cubic Feet x 7.48052 = Gallons

Cubic Feet x 28.32 = Liters

Days x 365 = Years

Feet x 12 = Inches

Gallons x 0.1337 = Cubic Feet

Gallons x 3.785 = Liters

 $Grams \ / \ 1,\!000 = Milligrams$

Grams $x \ 0.002205 = Pounds$

Milligrams / 1,000 = Grams